If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4u^2)+(20u)=0
a = 4; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·4·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*4}=\frac{-40}{8} =-5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*4}=\frac{0}{8} =0 $
| 9-5x=-x+57 | | -66-2x=63-8x | | 6v+12=10v | | 7x+4-3x=48 | | 30=-4t^2+24t | | 26+m=5(−6+3m) | | 5y(5y/(2y+5))^2/3=49.5 | | 9(4x+2)=30x | | 4x-13x=-12 | | (a.12)+32=180 | | 2v=-166 | | 35x+70=35x+52 | | -93+3x=-9x+63 | | 85-34=17(5x-2) | | x3=27216 | | (3x^2)+3=16 | | 9n+15+6n=60 | | 5+-9=-3+7t | | 0.6(x-3)=0.8(2x+4) | | 7(x+7)=-7x+7 | | 8(x–1)=8x–8 | | 6-9=5x-10x+2 | | 5=z/3 | | 2(x+1)=5x–3x | | 6-9=5x-10x-2 | | -6u+3(u-7)=3 | | 5x-54=18+2x | | 6-9x=5x-1x-2 | | ((x)^4-8(x)^3+15(x)^2+8x-16)=0 | | k13=-13 | | 8x-7x+4(2x-8)=31 | | 12=a8 |